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ABSTRACT 

An extension of the line search problem is considered in which the number  

of directions in which the searcher can head from the origin is arbitrary, bu t  

finite. One problem under  study is when the distribution of the  particle 

to be found has a hounded support. Sufficient conditions are established 

under  which an optimal policy exhausts a given direction before it proceeds 

to another  one, and the optimal order of directions in which to search 

is found. Special eases and some extensions are considered. A second 

problem has a game theoretic flavor, in particular a conjecture of Gal [13] 

is partially resolved. 

1. In t roduc t ion  

Consider a searcher looking for a particle at some unknown location. We assume 

that the set of possible locations for this particle forms a star of a finite number 

of directions around the searcher's initial position. The case in which there are 

only two directions is a special case of the classical line search setting which 

we will review and provide references to shortly. In order to search a given 

direction, which is not being searched at the moment, the searcher must return 

to the origin (the initial position) and only then head in the new direction. 

Movement within the star is at a constant speed and without stopping, until 

the item is found (which may be never). The particle is considered found when 

the searcher actually reaches its location. In Section 2 we formalize our setting 

mathematically. 
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Two problems are considered. In the first (Section 3) the objective is to mini- 

mize the expected travel time until the particle is found, when it is assumed that 

the distribution of the location of the particle on the star has bounded support. 

We establish sufficient conditions under which an optimal search policy has the 

property that it visits every direction only once (thereby necessarily exhausting 

it). We find the optimal order of directions in which to search which turns out 

to be similar in nature to certain scheduling problems. 

The second problem (Section 4) is a game theoretic version in which the hider 

chooses a distribution of the location for the particle and the seeker chooses a 

randomized search plan. In particular our aim is to partially resolve a conjecture 

posed by Gal [13] (p. 172). 

The line search problem was initially posed (but not solved) by Bellman [7], 

who assumed that there is a known probability distribution of the location of the 

item to be found. In his 1964 doctoral dissertation Franck (later on published 

as [10]) studied the problem. In particular, Franck established necessary and 

sufficient conditions on the probability distribution, for the problem to have a 

solution. Beck [1] sharpened the results in [10]. In Beck [2] the problem is 

studied for the case where the right and left derivatives of the distribution at 

the origin approaches infinity, thereby making optimal search strategies start 

with an infinitesimal osciUation around the origin. In Beck and Newman [3], 

the minimax line search problem was studied for the first time. In Beck and 

Warren [4], a nonlinear objective measure is considered. Fristedt and Heath [11] 

give more general frameworks of which many of the previous results are special 

cases. In Beck and Beck [5], concrete distributions are considered. The uniform 

case is the only one for which exact results are achieved. For other cases, only 

numerical algorithms or qualitative statements are possible. Beck and Beck [6] 

generalizes and tightens [5]. For a survey on the linear search problem see Bruss 

and Robertson [8]. See also Rousseeuw [16]. An excellent book on the subject 

with many references to related problems is Gal [13]. Gal [12] seems to be the 

first to consider the multi-directional extension of the linear search problem, 

in which a game theoretic aspect is considered, generalizing the pure minimax 

results studied in Beck and Newman [3]. 

2. P r e l i m i n a r i e s  

A s tar  is a finite set of directions (half-lines) emanating from a point (the origin).  
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Let K = {1 , . . . ,  k}, where k is the number of directions. For d > 0 and i E K,  

the pair (d, i), where d > 0 denotes the distance of the particle from the origin, 

will be called a loca t ion .  

Let us define what is meant by a sea rch  plan.  The physical description of the 

problem dictates that  a search will be conducted as follows. The searcher chooses 

a direction and starts moving along in that direction for some amount of time tl  

(say). If the particle has not been discovered by time tl the searcher goes back to 

the origin picks a possibly different direction and moves along that  direction for 

a time period t2, etc. In the literature of line search problems (k = 2), the notion 

of a "generalized search plan" is considered in which the searcher is allowed to 

begin his search with an infinitesimal oscillation between the different rays with 

finite total travel distance. In this case there is no first step and one describes 

the search step lengths as a two sided infinite sequence . . .  , t - 2 , t - l , t O , t l , t 2 , . . . ,  

rather than t l , t 2 ,  . . . .  In the case of the star the description becomes a little 

more complicated in the sense that one two sided sequence is not enough. One 

extreme possibility is that one can oscillate among all direction, in which case 

one double sided sequence will do. Another extreme is that  one can oscillate 

between two directions, then between two new directions, and so on, in which 

case the maximum number of sequences is need. Of course, anything in between 

is a pr/or/allowed. Hence, it is clear that in order to describe any (reasonable) 

search plan, we will need at most [k/2J + 1 sequences (with [aJ being the largest 

integer less than or equal to a). The first [k/2J sequences indexing possible 

infinitesimal oscillation sequences which have a finite sum (or sequences of zeros 

if no such oscillation is present) and the last indexing a sequence which has an 

infinite sum. More precisely let A t be the set of positive integers, and let Z_ be 

the set of all nonpositive integers. Set 

(2.1) ) Z* = Z._ • {i} U.IV" x {Lk/2J + i]. 
\ i----I 

and associate with this set the lexicographic ordering (z , i )  _< (y , j )  if i < j or 

i = j and z < y. For L = At or L = Z* denote by 

~n - -  the collection of all maps of the form ~ : L ~ (0, oo) x K ,  

and let 

(t t ,  i t )  = ~o(~) for a given ~o E q~n and s E L .  
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We will c~11 ~ E @Af (~ E @z.) a (genera l ized)  search  plan.  Denote 

(6(t) ,  t ( t ) )  the location of the searcher at time t. 

R e m a r k :  The notation (2.1) might be slightly confusing. However it should be 

thought of as the maxima] set of sequences needed. When not all of them are 

used (for example if there is one big oscillation among all the directions, or there 

are oscillations among sets of three or more directions) one simply sets t t  = 0 

for the first few unneeded sequences, which might be all of them if there axe no 

oscillations at all. | 

For a given ~ E @L, let Tt = ~j<ttJ, N(t) = sup{s EL] 2Tt < t} (left 

continuous). Note that if L -- A/', N(t) is the number of returns to the origin 
before (not including) time t and N(t) + I is the index of the current search. For 
this case, assuming, without loss of generality, that the searcher travels at unit 

speed, a little thought reveals that the distance of the searcher from the origin 

at time t is given by 

(2.2) ~(t)  = f t -- 2TNct) if t -- 2TNc, ) < tN(t)+ 1 , 
[ 2TN(,)+I - t otherwise, 

and the index of the direction that is searched at time t is 

(2.3) t ( t )  = iN(t)+,.  

For the case L = Z*, we define N(t) + 1 as the next member of Z* in the 

lexicographic ordering. This is well defined for all t, even at times where one 

oscillation ends and the next begins, in which case N ( t )  is the index previous 

to the final index in the ending oscillating sequence. With this notation, the 

definition of 6(t) and t ( t )  via (2.2) and (2.3), respectively, is the correct one and 

we adopt it for this case as well. 

Given the location (d, i) of the particle and a search plan ~, we will denote the 

(possibly infinite) time until the searcher finds the particle by 

(2.4) T~,(d, i) = inf{t] 6(t)  = d, t ( t )  = i} . 

For a Borel probability measure p on (0, oo) • K and a Borel measurable function 

g : (0, c~) x K -* (0, c~), we will use the following notation 

= oo) x { i } l ,  

(2.5) Fi( t )  = p[(0,t] X { i } ] l P i ,  
P 

E g ( D , I )  = ~'~.Pi [ g ( y , i ) d F i ( t )  . 
iEK~ J(O ,co) 
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3. Suf f i c i ent  C o n d i t i o n s  for  O p t i m a l i t y  o f  E x h a u s t i v e  S e a r c h  P l a n s  

From here onward we make the assumption that the distribution of the location of 

the particle on the star has bounded support and no mass at the origin. In other 

words we only consider Borel probability measures for which p[(0, B] x K] = 1 

for some 0 < B < oo. Let t l i cgA i •  {i} be the support (always a closed set) of 

p and, to avoid trivialities assume that,  for each i 6 K,  Ai is not empty. Denote 

bi = max{z[ z E Ai}, so that 0 < bi < oo. For A contained in the support of 

#, we denote A c the complement of A with respect to this support. Finally we 

denote by 1A the indicator of A (1 if A occurs, 0 otherwise). 

Definition 3.1: An e x h a u s t i v e  ( g e n e r a l i z e d )  s e a r c h  p l a n  (ESP) is a search 

plan with ~(n)  = (b,,(n),Tr(n)) for n 6 K (n 6 K • {[k/2J + 1} and t ,  = 0 

for n r A/" • {[k/2J + 1}), where ~r is some permutation on K.  For n > k 

(n > (k, Lk/2J + 1)), t. can and will remain undefined. 

The following is the main result of this section. 

THEOREM 3.1: / / ' for  every i 6 K, t[Fi(t) - l  -Pi]  is nonincreasing (strictly de- 

creasing) on Ai, then every (and only) ESPs with 

(3.1) P.(,) > . . .  > P,r(k) 
b~(l) - - b~(k) 

minimize ET~,( D, I) over f z .  (and hence, f N.). 

First note that,  under the assumption of Theorem 3.1, if 0 E Ai then for every 

O < z 6 A i  

_ _  = lim - -  = lim - p i t  > Fi(z)  pix > 0 
'to F - - ~  ,~0 Fi(t) ,1o - ~ -  ' 

tEA~ tEAl 

hence limit0 Fi(t) / t  < oo. This clearly holds if 0 r Ai, therefore, as in Theorem 

12 of Beck [2], it sumces to consider search plans from fiN" rather than f z - .  

The proof of Theorem 3.1 will be established with two lemmas. The first shows 

that ESPs are candidates for optimal search plans. The second, which is known 

and has wide applications in areas such as scheduling, queueing and sequential 

search, helps in determining which ESPs are optimal. 

LEMMA 3.1: Under the assumption of  Theorem 3.1, for any ~ 6 f N" that is not 

an ESP, there is an ESP r for which ETw( D , I) >_ ( > )ET,~( D, I). 

Proof: First, we observe that it is enough to restrict our attention to a subset 

f0  of fN" on which 
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(i) for every n �9 A/'; ~p(n) �9 UieK Ai x {i}, 

(ii) for m < n with i ,  = ira; tm < t , ,  and with 

(iii) ETa(D, I) < oo. 

Any other search plan can be strictly improved upon with a search plan from 

~I'0. The lemma is trivial for k = 1. Assume that it is true for all stars with at 

most k - 1 rays and for all choices of p. Without loss of generality assume that 

il = 1. If tl = b,, we use the induction hypothesis, and we are done. Otherwise 

let rnl = inf{n I n > 1, i ,  = 1}. If rn~ = oo then ET~,(D, I)  = c~, which we do 

not allow. Define the search plans %01 and %02 by 

(3.3) 

%01(n) = %0(. + 1) . �9 J r ,  

{ %0(ml) if n = 1 , 
%02(-) = if 1 < .  < m , ,  

%0(n+1) i f n _ > m l .  

To compare %01 with %0, note that if (D, I)  �9 (0, tl] f] A1 x {1 } we have T~(D, I) = 

D and T~ , (D, I )  = 2 r ' m ' - I  ~i=2 t~+ D. F o r ( D , / )  r  x {1},T~,(D,I)  = 

T~, (D, I )  + 2tl. Since #((0, tl] x { 1 )) = pl F1 (tl), simple manipulation gives 

(3.4) 
mt -1 ] 

E T ~ , ( D , I ) -  E T ~ ( D , I )  = 2 tl - p l F l ( t l )  E ti �9 
i=1 

If the right side of (3.4) is positive, then %01 performs strictly better than %0. 

Otherwise, assume that the right side of (3.4) is nonpositive. On (0, t l]NAt • {1}, 

= = 2~i=1 ti+D, T~(D,I )  T ~ , ( D , I ) = D .  On( t~ , tm , ] f ]A ,  x {1} ,T~(D, I )  " - '  

while T~, (D, I )  = D. Finally, on [(0,tm,]NA~ x {1}] c, T~,(D,I )  <_ 2(t,,, - t l ) +  

T~(D, I). This implies that 

ET~( D,I)  - ET~,2( D, I) 

i=1 

>_ 2[t lFl( t l )  -1 [Fl(tm, ) - Fl(tl)]  - [1 - p, Fl(tm,)](t,,  1 - t,)] 

= 2F1 (tin1) [tl(F1 (t ,)-1 - Pl ) - tin, (F, (tin,)-1 _ p, )] , 

where the second inequality follows from the nonpositivity of the right side 

of (3.4). From the assumptions, the bot tom right side of (3.5) is nonnegative 

(strictly positive), so that %02 (strictly) improves %0. 
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To complete the proof, observe that the above construction may be repeated 

again and again. There are three possibilities. Either after a finite number of 

iterations we will be able to use the inductive hypothesis (if the first step is the 

whole interval), or after a finite number of iterations the resulting search plan 

is an ESP, or this procedure continues indefinitely. For the first case it should 

be observed that the induction hypothesis is not applied to the original data, 

but rather to {Fi(-)I i ~ j} and {pi/(1 - P/)l i # j} for some j,  for which it is 

easy to cheek that the assumptions of the theorem still hold (now in the strict 

sense). In the last case, let ~" (n)  = (t m, i m) be the mth iterate of the search 

plan. Without loss of generality, assume that there is a subsequenee A/'I for which 

i~' = 1. Clearly t~' ]" b~ as m --* ~ (otherwise ET~,(D, I) = c~). For m E AZl 

denote by 

I (bl,1) i f n =  1, 
(3.6) e r a (n )=  ~m(n) otherwise. 

The following is a crude inequality 

(3.7) ET~,m(D,I) + 2(bl - t~)  >_ ETr . 

By the inductive hypothesis, there is a single ESP r which outperforms Crn for 

all m E A/'I. Since ET~m (D, I) is a nonincreasing (strictly decreasing) sequence 

we finally have that 

(3.8) ET~,(D, I) > (>) lirno ETa,.. (D, I) > ETr  I) , 

and the proof of the lemma is complete. | 

The next lemma and others with a similar flavor arise in various scheduling 

(e.g., minimizing flow time) and queueing applications (e.g., the "cp rule" for 

the M/G/1 queue with nonpreemptive priorities), as in (among many others) 

Conway, Maxwell and Miller [9], and also in sequential search problems, as in 

Kelly [14]. The simple proof is a standard interchange argument (e.g., Rau [15]). 

LEMMA 3.2: Let xi, Yi be positive rea/numbers for i = 1, . . . ,  k. Then 

(3.9) 
k i 

i=1 j = l  
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(3.11) 

so that 

is maximized (minimized) wi~h any permutation [or which 

(3.1o) x,,(,) < ( > ) . . .  < 
Y~'(1) 9~r(k) 

To complete the proof of Theorem 3.1, for a given ESP ~o with permutation Ir 

on K, observe that 

k 

T~o(D, I) = 0 + 2 E t~(/) 1 {,~(x)>~(i)} 
i=1 

E T , ( D . O  = E o +  1 -  

(3.12) i=I j=1 
k k i 

i=1 i=1 j = l  

and the result follows from Lemma 3.3. | 

Reanarks and Spedal Cases: 

1. The difference in performances between any two ESP's depends on/~ only 

through the endpoints of its support and the weight it gives each direction. 

2. Theorem 3.1 implies that, if its assumption is satisfied strictly and pi/bi ~t 
pj/bj for every i ~ j ,  then there is a unique optimal search plan. 

3. For Pi proportional to bi, all ESPs have the same performance and it is 

straight forward to show that 

k k 
Ei----1 2 (3.13) ET~o(D,I) = ED + E bi b, k 

i----1 Ei----1 bi 

4. Requiring that when the particle is found it must be brought back to the 

origin adds ED on the right side of (3.12), hence none of the results change 

under this assumption. 

5. Assume that the searcher has the freedom to start from an end point (hi,/) 

for some/, rather than from the origin. If the particle is not on the / th  ray, 

once the origin is reached we are back to the original problem. Therefore 

one needs to compare k permutations of the form 

{ ~'(j) if i = 1 , 
(3.14) ~ri(i ) =  ~r( i-1)  i f 2 < i < j ,  

~r(i) i f j  < i _< k ,  
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. 

where Ir satisfies (3.1). For pj = b j / E i E K  bi, direct computation shows 

that the optimal starting point (bj , j)  is such that b j ( ~ , i ~ K b i -  2(bj - 

E[DI I = j])) is maximized (thereafter, according to remark 3, continuing 

with an arbitrary ESP). In particular if E[D I I = j] = ~bj for some 1/2 < 

a < 1 and all j E K then it is easy to show that it is optimal to start with 

(bj , j)  where bj is maximized (i.e., start with the longest interval). 

Any distribution function F(.)  which is increasing return to scale (F( t ) / t  is 

nondeereasing) on its support clearly satisfies the assumption of Theorem 

3.1. In particular any distribution that has a nondeereasing density on (a, b) 

for some 0 < a < b < oo which is zero elsewhere is increasing return to 

scale on (0, b l, hence on its support [a, b]. A special case is when F(.)  is the 

uniform distribution function over (a, b). From this and remark 3, i fp  is the 

uniform distribution (normalized Lebesgue measure) over I.JicK(O, bi) x {i}, 

then all ESPs are optimal. 

For every point t where F(-) is differentiable with derivative f( . )  it is easy 

to see that the assumption of theorem 3.1 is satisfied if and only if F(t)[1 - 

pF(t)] _< (<)t f( t) .  Note that on one side, i fp  < 1/2 we have that z(1 - p z )  

is increasing on [0,1], hence z(1 - pz) < 1 - p for this case. On the other 

hand z ( 1 - z )  < 1/4, hence z ( 1 - p z )  < 1/(4p). In particular, if the support 

is the interval (a, b) and F(.) is differentiable there, a sufficient condition 

for the assumption to be satisfied is 

1/(4p) i fp  > 1 / 2 ,  
(3.15) t f ( t ) > ( > )  1 - p  if p < 1 / 2 ,  

for all t E (a, b) where 0 < a < b necessarily satisfy 

(3.16) _b < f exp(4p) if p > 1 /2 ,  
a -  [ e x p ( 1 / ( 1 - p ) )  if p < 1 / 2 .  

Another special case is when the conditional distribution over some interval 

(a,b) is uniform, i.e., 

t - a  
(3.17) F(t) = F(a) + qb - a 

for t E (a, b) and 0 < q < 1 - F(a). In this case, it is easy to check that 

F(.)  satisfies the assumption (in the strict sense) on the interval (a, b) if 

and only if 

qa 
(3.18) F(a)[ i  - pF(a)] < b - a 
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n In particular let F(t)  = ~-,j=l qjFy(t), where 

0 if 0 < t <_ Aj -1 ,  
(3.19) F j ( t ) =  ( t - A j _ l ) / a j  i f A j - i  < t < _ A  i, 

1 if Aj < t, 

with 0 <_ Ao < A,  < . . .  < An, aj = Aj - A j_ , ,  qJ > 0 for all j = 

1, . . .  ,n  and ~-,~=1 qJ = 1. Denoting Qj = qi + . . .  + qj, the assumption of 

Theorem 3.1 will be satisfied (strictly) if and only if 

(3.20) Q j-1 (1 qJ - p Q i - 1  ) -< 

for every 2 < j < n. In particular this condition holds if qj/aj  is nonde- 

creasing in j (which also follows from remark 6). 

If t is an atom, t (F( t )  -~ - p) has a jump down at t. If A is the support of 

F(.)  and sup{x I x E (0,t) NA} = t. It is easy to see that  the assumption of 

Theorem 3.1 is satisfied on (0, t] O A if and only if it is satisfied on (0, t) N A. 

Hence if A is an interval, it suffices to check that the assumption holds at 

points of continuity of F(.). 

4. On a Conjec ture  o f  Gal  

Gal [12], [13] has studied the problem in which the searcher chooses the best 

strategy so as to make the worst case relative travel distance minimal. More 

precisely the problem Gal considered is 

T~( d, O 
(4.1) inf sup --_ 

~E'~z (a,i) d 

where Z = Z_ U .M is the set of all integers. In this case, either d > 0 and one 

necessarily has to use search plans with no initial step (for every search plan with 

an initial step the supremum in (4.1) is infinite) or d > e > 0 in which case there 

are optimal search plans with an initial step. It turns out that any policy with 

i n -  1 = n -  1 (mod k) and tn = a [ k / ( k -  1)] n with a > 0 and n E Z,  is optimal. 

For the case where d > e the same is true but one can also choose a policy with a 

first step, i.e., n E A/', with the restriction that a/e  <_ 1 + ([k/(k - 1)] k-1 - 1) -1. 

The value of (4.1) turns out to be 1 + 2k[k/(k - 1)] k-1 which is clearly strictly 

larger than 1; the value of the maximin (reversing the order of the inf and sup 
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in (4.1)). It is straight forward to argue that the same ideas can be used to 

show that  Z in (4.1) can be replace by Z* with the results remaining unchanged. 

In his book ([13], page 172), Gal conjectures that if one is allowed to consider 

randomized strategies for both the hider and the seeker, then the value of the 

game is 

r k - 1 
(4.2) vk = 1 + 2 rain , 

r>l k ( r -  1)Inr 

with the optimal randomized search strategy for the searcher having t ,  = r~ +kv 

where rk > 1 is the minimizing value in (4.2), and U is a random variable 

uniformly distributed on (0,1). 

Let 0 I  ( I  for increasing) be such that ta _< tn+l and in - 1 = n - 1 (rood k) 

for every n. We will prove that the conjecture is true under the hypothesis that 

only cyclic nondecreasing search plans, i.e., search plans in 0I ,  are allowed. From 

the analysis below it will follow that Gal's conjecture is true provided that the 

following is. 

CONJECTURE 4.1: For every symmetric distribution of the particle on the star, 

and every %0 r q~z there is a r 6 cI, x for which ET~(D,  I )  >_ ETc,(D, I).  

Clearly (e.g., Theorem 3.1) conjecture 4.1 does not hold for asymmetric dis- 

tributions. Also it should be noted that Conjecture 4.1 is stronger than what we 

need. In fact, it suffices that it holds for distributions described by (4.4) in the 

sequel. 

To proceed, straight forward manipulations (Gal [13], page 172) shows that 

with the randomized search plan above the expected time to reach every location 

(d, i) is at most vkd, so that it suffices to argue the validity of the following result. 

THEOREM 4.1: For every e > 0 there is a distribution I~ such that for every 

nonrandomized search plan from r  

(4.3) ETa(D,  I )  > vk - (2k - 3)e 
E D  - l + e  

Proof." We follow the approach in Beck and Newman [3]. Using the notations 

from Section 2, for a given e > 0 consider a measure # with pi = 1/k  for all i 6 K 

and 

0 f o r 0 < t < b ,  
(4.4) Fi(t) = 1 -  b/t f o r b _ < t < B ,  

1 f o r B S t ,  
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where b = e/(1 + e) and B = be 11`. It is simple to check that E D  = E[DI I = 

i] = f : [ 1 - F i ( t ) ] d t  = 1 for every i �9 g .  It is also clear that it suffices to consider 

�9 r I with an initial step tl > b and for which there is an n > k such that 

t,,+l . . . . .  t,,+t = B (otherwise ETa(D,  I)  = eo). Letting t l - t  . . . . .  to = b 

and z + = max(z, 0), we have that (with (B, B] being the empty set) 

(4.5) 

- -  [o ] E T ~ , ( D , I ) = I + 2  ~=  t , ,  " = ( t v + i - t ' B ] •  

n + k - I  k - ( v - n )  + b k _  1 
=1+2 E t~ E tv+j-k 

l ,=l j = l  

=1+--  E t,,+.i-k ' 
j = l  u=l  

hence (arithmetic geometric mean inequality), 

E T ~ ( D , I )  > I +  - - E ( n + k - j )  t~,+j_t' 
./=1 L t ,= l  

k 
2b ~ ( n  + k - j ) (B/b)  (k-i)/(~§ (4.6) = 1 + T 

1=1 

2 E e ( n + i ) e x p  ~(n~-i) " = 1 + k(1 + ,----~ ~---o 

Now for every 0 < a _</~ < 7 and a > 0, 

/: // (4.7) ~ ' / ~  = e'/~dz + ~ >_ ~'/ 'dz + ~, = ~ ' / ,  - (.y - ,~), 

in particular when a = i, a = en, ~ = ~(n + i) and 7 = e(n + k - 1). Hence, the 

bottom right side of (4.6) is bounded below by 

(4.8) ( '  
2 e ( n + k - 1 ) e x p  e ( n + k - 1 )  1 + k(1 + e'~'-)/=o 

Finally define r = exp(1/[e(n + k - 1)]) > 1 so that (4.8) becomes 

[ _~_ =~ ] v~ - ,(2k- 3) 
(4.9) 1 + ~--~e I k(r _ 1)ln r e ( k -  1) > 1 + ~  ' 
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which establishes the result. II 

It is of interest to consider what happens as k becomes large. In this direction 

let us state and prove the following Lemma. 

LEMMA 4.1: Let a = 1.59362426 be the unique positive ~xed point of the func- 

tion 9(z) = 2(1 - e-*) .  Then 

(4.1o) 

lira k(rh - 1) = a, 
k.-+oo 

lim vt e a - 1 2 ~-.oo u = 2 ~ = a ( 2 -  a------~ - 3.08827731. 

Remark: 

immediate and are given by 1 and 2c = 5.43656366, respectively. 

Note that  the corresponding limits for the pure minimax solution are 

r - 1  

( k -  1)(r-  I) + ~ - 1 
r m - - I  

< (~,-' i2,., 

\ i = 0  / \ i = O  / 

Proof: Denote by 

k - 1  _i 
(4.11) /k(,) = E ~ = 0 ,  

k - 1  
~"~- i=0 iri 

Since by S&wartz ' s  inequality 

(4.12) 
\ i--0 / 

for every r > I, it follows via differentiation that fk(') is a strictly decreasing 

function on [1, co) for every k > 2. As r k - 1 > k(r - 1) for every r > 1 it is 

implied that 

1 2 
(4.13) k--~- 1 < f(r) < f(1) = k'--~ 

for every r > 1. It is also simple to check that for every r > 1, {fk(r)[ k > 2} is 

a strictly decreasing sequence. 

Differentiating the function which is to be minimized in (4.2) gives that rk > 1 

is the unique solution of Inr = fk(r) in [1,co), hence {rk[ k > 2} is a strictly 

decreasing sequence and it is straight forward to show that rt ~ 1 as k ~ co. 

To study the rate at which this convergence takes place, first note that, from the 

previous paragraph, 

(4.14) In,~  -* = (k - I ) / , ( , , )  < 2 ,  
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so that from r l - '  > 1 + (k - l)(rk -- l) it follows that (k - l)(rk - I) < e 2 - 1 

for every k _> 2. Also 

1 
(4.15) k ---~ < f ( rk)  = lnrk < rk - 1 ,  

hence ak = (k - 1)(rk - 1) is a sequence which is bounded between 1 and e 2 - 1. 

Taking an arbitrary convergent subsequence which converges to a, say, we have 

that r~ --+ e ~ for the same subsequence. Hence, taking the limits on both sides 

of lnr~ = kfk(rk)  and rearranging terms gives that necessarily a is the unique 

positive fixed point of the function g(x) = 2(1 - e -X) .  This implies that  the entire 

sequence converges to a. From this, the bottom limit in (4.10) is immediate. 

| 
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